If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+16x+33=0
a = 1; b = 16; c = +33;
Δ = b2-4ac
Δ = 162-4·1·33
Δ = 124
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{124}=\sqrt{4*31}=\sqrt{4}*\sqrt{31}=2\sqrt{31}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-2\sqrt{31}}{2*1}=\frac{-16-2\sqrt{31}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+2\sqrt{31}}{2*1}=\frac{-16+2\sqrt{31}}{2} $
| 3x+95-22=-120+250 | | 10-x=6x-32 | | 3*0+n=10 | | 4x+25/(x^2)=0 | | 5*0=q-3 | | 5*1=q-3 | | 5(1)=q-3 | | 5(4y+-7)=-115 | | 11x+7/8=75 | | 19-4x=27-56 | | -4(-1y+7)=-16 | | X=3y=-5 | | 3x/17=-35 | | 0.75(y-1)=0.25(8y-1) | | 4x+2=15x-64 | | F(x)=x+9/2x-5 | | -3x-6(4-x)=9 | | 5y=-4/15 | | 60=0.03p | | (-10+b)+(7b-5)=0 | | 5x+6(-3x-2)=-2-5x | | 5t^2-15t-200=0 | | 3x2-24x-1560=0 | | 0.5x+x/3=0.25x+3 | | 0.5x+x/3=0.3 | | Y-18=-9x | | 5n-20=7n-80 | | (5/8)(2x+1)-(2/9)=(5/(12))(x-2)-(5/6) | | 7x+19=3(4x-7) | | n-1.4=2.6 | | n+2.3=7.9 | | n-8=100 |